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Ray splitting in a class of chaotic triangular step billiards
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For a clas<7 of triangular step billiardé§TSBg we prove analytically the absence of elliptic islands in phase
space. There is numerical evidence that TSBs are ergodic, sensitive, and mixing. Thus TSBs are chaotic,
although their Kolmogorov-Sinai entropy is zero. We study the quantum implications of ray splR&)gn
TSBs. The signature of non-Newtonian periodic RS orbits is identified in the Fourier transform of the TSB
level density. The RS correction of the Weyl formula is tested in the TSB context. In contrast to the rich
structure of split circle wave functions, TSB wave functions, except for the emergence of short-range corre-
lations in the form of scarlets, appear featureless and homogerj&di63-651X%97)06109-9

PACS numbd(s): 05.45+b

[. INTRODUCTION One of the two domains is kept at potentiéE 0, while the
other is kept av=Vy>0. Thus, a discontinuous step of the
Ray splitting may occur in all wave systems with sharply potential occurs alon®, which, in a quantum treatment of
defined interfaces. Light rays, e.g., are split into transmittedhe TSB, gives rise to RS phenomena analyzed in detail in
and reflected rays at the interface between two dielectric&ec. Ill. While a complete analysis of arbitrary TSBs is pos-
with different index of refraction, and acoustic waves genersible, it is not necessary for our purposes. In this paper we
ated by an earthquake experience ray splitting at fault linesnvestigate a restricted s&tof TSBs defined in Sec. Il A. In
Apart from optics and acoustics ray-splittitBS) phenom-  Sec. Il B we introduce the bouncing rule, which states that an
ena occur, e.g., in hydrodynamics, microwaves, and quantumrbit started anywhere inside a T&F has to reach the RS
mechanics. Thus, ray splitting is universal. Its wave implica-boundaryR after a finite number of bounces with the sides of
tions, however, have only recently been investigated. Couchthe TSB. The bouncing rule is purely geometric. In Section
manet al.[1] studied ray splitting in the context of acoustic II C we extend the bouncing rule to the crossing rule, which
and quantum chaos. Prangeal. [2] computed analytically states that, given a certain condition, any orbit in a ESB
the RS correction to the Weyl formul8]. Blumel etal.  actually has to crosR after a finite number of “trials.” The
[4,5] investigated RS phenomena in a chaotic circular step
billiard. They identified the signatures of non-Newtonian RS
orbits in the Fourier transform of the scaled level density,
thereby demonstrating the importance of periodic non-
Newtonian RS orbits for trace formulas pertaining to RS
systems. Recently Sirket al. [6] identified experimentally
the signatures of non-Newtonian RS orbits in the resonance
spectra of a microwave cavity partially filled with Teflon.
In this paper we study the classical and quantum mechan-
ics of a class7 of triangular step billiardgTSBg. Without
the potential step these billiards are pseudointegr@ble
With the potential step, TSBs are chaotic. We show that the
TSB phase-space structure is simpler than the mixed phase
space of circular step billiards. There are, e.g., no elliptic
islands in the phase space of TSBs. We present a classical
analysis of7 in Section Il. The quantum mechanics Bfis
investigated in Sec. Ill. Section IV summarizes our findings
and concludes the paper.

II. CLASSICAL MECHANICS

A TSB consists of a mass poimh bouncing inside a
triangular enclosure divided into two domains by an RS
boundanyR (see Fig. 1 A typical TSB is shown in Fig. ().

FIG. 1. Triangular step billiardéTSBS. (a) A general TSB. The
ray-splitting boundanR separates the two domains of the billiard

*Electronic address: ako@phyc1l.physik.uni-freiburg.de with V=0 (the white region inside the TSBand V=V,>0 (the
Electronic address: killes@phycl.physik.uni-freiburg.de grey region inside the TSB(b) A special TSB= 7, the class of RS
*Electronic address: blumel@phycl.physik.uni-freiburg.de billiards considered in this paper.
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crossing rule is a dynamic rule. Because of the possibility of
total classical internal reflection discussed in Sec. Il A, the
bouncing rule does not imply the crossing rule. In Sec. Il D
we introduce a symbolic dynamics for coding TSB trajecto-
ries. In Sec. Il E we present Newtonian and non-Newtonian
periodic TSB orbits. In Sec. Il F we construct the Poincare
mapping of the TSB. Here we make decisive use of the
crossing rule when choosirg as our surface of section. In
Sec. I G we prove the absence of elliptic islands of any
order in the TSB phase space. Visual inspection of the TSB
surface of section corroborated by a more detailed numerical
analysis presented in Sec. Il H indicates that TSBs are er-
godic, sensitive, and mixing. Thus TSBs are chaotic, alas
with zero Kolmogorov-Sina{KS) entropy.

FIG. 2. Refraction of a classical orbit with momentyinwhen
A. Definitions crossing from a region with potenti®=0 through a ray-splitting
boundaryR into a region withV=Vy>0. The relation between the

A typical member of the restricted s@tof TSBs consid- incident anglep and the final angle’ is given by Snell’s law.

ered in this paper is shown in Fig(d. It is defined by the
following requirements(i) Only isosceles triangles are con-
sidered. (i) The base angley is restricted to the range
wI3< y<ml2. (iii) The RS boundaryr is orthogonal to the
baseline of the TSB and divides the TSB into two domains o
equal size. The RS boundary is assumed to be rectilinear ; — [EN i

throughout this paper, although curved RS boundaries are \/Esm((p) E~Vosinte"). @
certainly interesting and deserve further investigation. Thedefining

sides of a given TSB 7 are labeled with the lettelS, P, Q,

andT. Throughout this paper we choose units such that the n=Vol/E (5)
length of the RS boundary is In=1/2 andA=1. Thus,

according to Fig. (), R={(x,y=0):0<x<1}. Although and

according to their definition the lette®, Q, R, S, andT
denote point sets, we will also use them in Sec. Il D as the
symbols of a symbolic dynamics for the TSB. This is pos-g
sible since a confusion between point sets and symbols of an
alpha_\l:_)et seems unlikely. Often_ we Wi_II h:_;lve to focus on a sin(g) = ksin(¢’). (7)
specific TSB= 7. We choose quite arbitrarily the TSB with

vy=T7m/20 and denote it by TSBV,). TSBy(Vy) is a ratio-  If the particle originates i\, it is transmitted througtr
nal triangle, pseudointegrable fol=0 [7]. ForVy#0 this  according to Eq(4) no matter what its incident angle. De-
property is lost and TSEV,>0) is chaotic(see Sec. Il hi pending on its incident angle a particle orginatingAp is
Denoting the interior of the TSB bg, we define the upper either transmitted according to E@), or it is specularly

the action. This results in Snell's law of refraction. We note
that because o¥,V=0 onR we havep,=p,. From Eq.(3)
f’t follows immediately that

k=\1-7, (6

nell's law(4) becomes

and lower parts of the TSB according to reflected atR and thrown back inta\,. This latter case is
called classical internal reflection. It occurs whenever
Ay={(x,y) e Aty>0}, ©> ., Whereg, is the critical angle given by
Aj={(x,y) e Ary<0}, (1) Sin(g¢) = k. 8
respectively. The potential experienced by the particle )
bouncing inside the TSB is given by B. Bouncing rule

In this section we prove the bouncing rule for TSBE a
0. (xy)ea, trajectory started anywhere iA reachesR after N<3
V(x,y)=1{ Vo, (X,y)el (2)  bounces. First we focus on a trajectory started jn There
o, (XY)&A. are three possibilities for its orbifi) The trajectory bounces
off P, (ii) the trajectory bounces of§, (iii) it reachesR.
In the units defined above, the classical Hamiltonian functionfhere is nothing to be proved in cai). Case(i) and case
is given by (il) have to be considered further. First we focus on d¢agse
There are two ways of following the itinerary of a trajectory.
H=E= p§+ p§+V(x,y). (3 Either we plot its zigzag path withih,, or we represent it
as a straight line in the plane reflecting the triangle at the side
In either part of the TSBA, or A, the motion of the par-  of impact. We choose the latter way. The subsequent reflec-
ticle is free[VV(x,y)=0 in A,,A|] with specular reflec- tions relevant to cas@) are shown in Fig. @&). The diagram
tions at the outer boundaries of the TSB. The refractivawas drawn for the limiting angle of TSBs i, y= /3.
transmission througR (see Fig. 2is found by minimizing  Drawing a straight line through an arbitrarily chosen point in
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FIG. 4. A trajectory, internally reflected irg with angle ¢q
continues to the left to readR in x; with angle ¢ .

three possible casesi) ¢1>¢c, (i) ¢1=¢., and (iii)
1< ¢.. In the third case the trajectory crosses In the
second case, technically, the trajectory crosses too. After
crossing it runs parallel tB in A at a distance— 0 fromR

and corresponds to a “lateral rayf4]. Lateral rays are not
considered further in this paper. In the first cage< ¢g,

but the trajectory is again internally reflected. Repeating the
above procedure, the trajectory will continue to the left. Af-
ter a finite humbem of bounces we haver,,= ¢g—2n«
<. and the trajectory crossé& If the trajectory emerges

at X, to the right withgg the situation does not change, since
after a finite number of internal reflections the particle en-
counters the corner cube spannedgndP and reverses its
momentum inx direction. From this point on, the above
proof applies. Given the crossing criterion this proves the
crossing rule inA. Along the same lines it is possible to
prove that a particle bouncing inside TgBas to crosR
after at most one total internal reflection.

FIG. 3. Replicas ofA, of a TSB for proving the bouncing rule.
(a) The first encounter of a trajectory startedAp is with the side
P of the TSB.(b) The first encounter is with the sid&

. . D. Symbolic d i
A, and an arbitrary point o we see that fory> /3 the ymbolic cynamics

straight line intersects with a replica Bfafter at mostN =3 We code trajectories of the TSB according to their en-
intersections with replicas d® or S. This proves the bounc- counters wittR or the sides of\, respectively. Therefore the
ing rule for case(i). The relevant diagram for cagé) is  alphabet of a possible symbolic dynamics for the TSB con-
shown in Fig. 8b). Again it is obvious thaN<3. This con-  Sisits of the set of letter§P,Q,R,S,T}. Every time a trajec-
cludes the proof of the bouncing rule far,. The proof for ~ tory is reflected aR its symbol string aquires the new letter

A, runs along identical lines, thus proving the bouncing rule” R.” If it crosses R, no new letter is added to the symbol
for A. string. The symbolic description is especially useful for la-

beling periodic orbits. It is sufficient to label any possible
orbit of the TSB. However, not all possible symbol strings
) _ _correspond to TSB orbits. Grammatical restrictions apply.
Because of the bouncing rule proved in Sec. Il B an orbitthe simplest grammatical rules are summarized in Table I.
started anywhere ia will reach R after no more than three \ye see that repetitions of letters suchS®8PP, TT,QQ,RR
bounces with the outer boundaries of the TSB. But becausge forbidden. Sequences wiQ and QP are not possible
of the possibility of classical internal reflection, reachiRg either, because a transmission throwylcannot change the
does not imply crossin®. Only if the trajectory originates  gjgn of the momentum in thp, direction. Because internal
in A does reachin® actually imply crossin® into A,. For - refiection is only possible im\,, combinations such as

this case we formulate the following crossing rule: a trajec—QR TR,RQ,RT are not allowed. Besides these simple rules
tory started inA; will cross R into A, after no more than  ihere are more complicated grammar

three bounces with the sides &f It is impossible to formu-
late a similar rule forA,,. In fact, for sufficiently largev,
there is always at least one orbit forever confinedAtp.
However, complete deconfinement of trajectories is achieve
if the following crossing criterion is fulfilledip.> «. In or-
der to prove it we consider the following case: a trajectory is
internally reflected inxy with ¢o> ¢, (see Fig. 4. We fol-
low this trajectory to the left. The trajectory hi& again in
X1 with incident anglep, . If the momentum in the direc-
tion is positive inx, the trajectory will cross the RS bound-
ary, because in this casg,<a<¢g.. If the momentum in
the x direction is negative irx;, ¢;=¢o—2«. There are

C. Crossing criterion and crossing rules

TABLE I. The Markov matrix with the simplest grammar rules
B)r TSBs.

B
Py}

DO - 1T W
PP RrRPRO|W®W
 OR O R
Or OREF |4
coror|O
OO0 OR R
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rules. The sequencésPT,TPT,RPRTPR do not exist be-
cause a bounce & with positive momentum in thg direc-

Al Bl Cl
tion is always followed by a bounce &t A similar argument
shows thatSQSis forbidden. Apart from the grammar rules
there are parameter dependent pruning rules. But their dis-
cussion is not needed for the purposes of this paper.

FIG. 5. Short Newtonian orbits of TSB

E. Periodic orbits . . . .
=1,2,... . Another series of NN orbits, thbn series, is

There are two major types of periodic orbits in TSBS: shown in the second row of Fig. 6. This series is topologi-
Newtonian and non-Newtonian. We label Newtonian orbitscqy the same as then series, but the action of the orbits
with capital letters, non-NewtoniafNN) orbits with lower - itters 1y a factor 1/E—V,. Initial conditions that generate
case letters. Three examples of short Newtonian orbits arg .\, cories arec.= 1 Dun= — E COSEr2—na), pyn>0

e o A : n=1, Pxn , pyn>0.
§hown In Fig. 5. Among Oth‘?r penodm; orbits they are I'S.t.edFor these simple NN orbits the initial conditions are indepen-
in Table Il together with their symbolic codes and stability dent of . The global dynamics of NN orbits is rather com-
Eropesrtles'. tVVe note }hat the tNevv‘io(r;;an orlbfms a_r;(;Cl 'B.t plex. The symboR can be used for all types of reflection at
Blf. h EXISt over a argle ;n erval o¥p va L.Jf.es' | € ot the RS boundary, i.e., for both internal and NN reflections. In

h! ho(\j/vevera eX|stch\)/n y .ﬁr a very sp;]e_m '% va ue_\b[j,. order to apply the method introduced[8] to NN orbits it is
\g Ic " Spin S t?”" I\?NWI br'(tetucgln to t '3% lserv?k?orlllln necessary to introduce a classification for the NN orbits such

ec. - Apart from NIV orbits diSCUSSed below the NeW- a1 aach class by itself is deterministic. Following an inves-
tonian orbits are a major ingredient for pr_edlctlng the q_u_an'tigation of grammar rules, the method [&] can be used for
tum Ie_vel density of the TSB on the basis of the mOd!ﬂedeach class of NN orbits separately. Because of the simple
Gutzwiller trace formula suggested fifi]. Many more peri- structure of TSBs, location and shape of many of the peri-
odic orbits than those listed in Table Il are necessary for 8 i. TsB orbits c:;m be computed analytically. This is dem-
proper check of the modified Gutzwiller trace formula. A onstrated in Appendix A where we compute analytically and

possible method for finding them is the one studied8n explicitly all characteristics of the Newtonian orl@tl.
and already successfully applied[i@]. In this paper, how-

ever, we are content with identifying short Newtonian orbits
in the Fourier transform of the TSB level densigsee Sec.
D). There are several possibilities for defining a Poincane

NN orbits are orbits that are reflectedRtwvhere, accord- face of sectiofPSS for the TSB. We choosB because—as
ing to Newtonian mechanics, they should have been trandeng as the crossing criterion is fullfiled—every orbit i
mitted. Every time the trajectory hits the RS boundary origi-eventually crossef (see Sec. Il @ Concerning the con-
nating inA,, or in A, with o<, it “decides” whether to  struction of the Poincarenap we record a section point
cross or to turn around on the basis of the quantum reflectiowhenever a trajectory crossBswith positive momentum in
coefficients. This implies a loss of determinism, a featurethey direction. Total internal reflection points do not corre-
that contrasts with Newtonian mechanics. Nevertheless thespond to section points. As coordinates on the PSS we
orbits are important for the quantum spectrum. Three serieshoose thex coordinate orR and thex componenp, of the
of NN orbits are shown in Fig. 6, ordered according to in-momentum inA,. An example of a PSS, the PSS for
creasing action of their first member. Initial conditions thatTSB,(1/2) atE=1, is shown in Fig. 7). Because of total
generate thean series displayed in the first row of Fig. 6 internal reflection the maximum db,| is 1#2. We gener-
are X,=1, pyxn=—VE—Vqcos@2—na), py,<0, n ated the PSS by starting a single trajectory with coordinate

TABLE Il. The stability A, the actionS,, and the timeT,, for the shortest non-Newtonian and New-
tonian periodic orbits for TS§1/2).

F. Poincare map

Periodic orbit Alphabet X Py Ap S Ty
al RQT 1 -0.321 1 0.642 0.642
a2 RTQRT 1 —0.572 1 0.932 0.932
a3 TRTQRTR 1 —0.698 1 1.397 1.397
bl RPS 1 —0.454 1 0.908 0.454
b2 RSPRS 1 —0.809 1 1.319 0.659
b3 SRSPRSR 1 —0.988 1 1.975 0.988
cl TRQTQR ¥ (0.74,1) —-0.321 1 1.284 1.284
dl SRPSPR % (0.74,1) —0.454 1 1.816 0.908
Al SQT 0.469 —0.208 —2.243 1.338 1.083
Al STQ 0.617 —0.669 —2.243 1.338 1.083
Bl STQT 7=0.403) x e (0,0.630) —0.454 +1 1.543 1.219
Ci SRPSTSPRST 0.314 +0.321 -1 1.910 1.056
D1 SRPSTSPRST ex0,0.627) +0.321 +1 3.820 2112
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It is possible to state the Poincameap P of the TSB
al a2 a3 S > . .
explicitly with the help of closed analytical expressions. To
this end we define the angjg@between the trajectory arid
according top,=cos(@). The Poincaremap is then com-
posed of four partsP=P,P;P,P,. The mappindP; traces
bl b2 b3 the trajectories starting oR with positive momentum in the
y direction until it hitsR again with a momentum which does
not allow internal reflection. The possible symbol strings for
P; and the corresponding mappings foand 8 are shown in
Table Ill. The intervals fox and 8 give the starting points in
cl cl’ dl the PSS that yield the corresponding symbol string. The
mappingP, represents the transmission throughwhich is
described by Eq.7). The mappingP; is essentially the same
asP,. The mappingP, is again described by Ed7). Be-
cause of the bouncing and the crossing rules the number of
possible symbols in Table 11l is finite and small. This is the
FIG. 6. Short non-Newtonian orbits of T§B main reason for restricting our investigations to the cias$

TSBs.

x=1/2 and momentump,=1/5 and iterating itN=10°

times. Visual inspection of the resulting PSS indicates that G. Absence of elliptic islands

TSBy(1/2) is chaotic. The horizontal structure@t=0.32 is . ) ) .

due to a family of marginally stable periodic orbits shown in 1€ following proofis not restricted to TSBs. It applies to
Fig. 7(b). If the trajectory joins the neighborhood of a mar- all plo.lygonaI.RS b|II|ards.(_51nd rests on the strupture _of the
ginally stable orbit its local Lyapunov exponent becomesstabnny_matnx. The s_tab|I|ty maitrix _of a two—d|m_en5|onal
very small and it stays some time in the neighborhood of thi$YStem is a &4 matrix. In Hamiltonian systems it can be
marginally stable orbit. This generates the horizontal strucfeduced to a X2 matrix[10]. This is achieved by choosing
ture seen in Fig. @). It is proved analytically in Sec. I G local coordlnates' that are, respectlvely, perp_endlcular and
that the PSS of a TSB does not contain any elliptic islandsParallel to the orbit in configuration space and in momentum

Thus for a larger number of iterationsl& 10P) the “white ~ SPace. The matrix elements for the coordinates parallel to the
area” of the horizontal structure in Fig(& gradually fills orbit are then trivial. The stability matrix in local coordinates

in. then describes the time dependence of an initial displacement
of the starting point perpendicular to the orbitX,dP) ac-
cording to
J0.5

x| (dX
(dP’):M(dP)' ©

For billiards withV=0 the stability matrix is derived ifL1].

For step billiards there are four different types of motion:
free, reflection at the outer boundaries/freflection atR,

and transmission througR. Therefore it is convenient to
represent the total stability matrM of an orbit as the prod-
uct of partial matrices that correspond to the different types
of motion encountered by the orbit in the course of its his-
tory. The partial stability matrixvi(") for free (rectilineay
motion is given by

DPx

(b)

M<f>=(1 I) (10)
0 1)

wherel=L/\E—V is the optical path length of the trajec-
tory with L denoting its geometric length. The partial stabil-
ity matrix M(") for reflection is given by

-1 0
0 -1/

M“):( (11)

FIG. 7. (a) Poincaresurface of section for TSR1/2) with _ _. _ o
E=1. The motion is chaotic over all of the dynamically accessible The partial stability matrixv ) for transmission througR
phase space. The horizontal structurgpat0.32 is due to a one- Ccan be calculated on the basis of simple geometrical consid-
parameter family of marginally stable orbits of the type shown inerations. An initial displacement in configuration spdcéis
(b). mapped into the final displacemedX’ after the transmis-
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TABLE Ill. Analytical expressiongsecond columnfor the free-motion partcharacterized by its symbol
listed in the first columpof the TSB Poincarenapping.

Alphabet

XI,BI

ST

x'=—[x csc(x—pB)sin(B)], xe(0,1)

B'=2a—B+m

Be g— arctaf —x+co92a)]csq2a)}, 77)

SPTQ

X' =2+x csc(z—p) sin(B), xe(0,1)

B'=—2a+p

T 1
Be 5 arctar{z [—x+2 CO&{Za)]CS({Za)],

5=
X =csc(d—B)[2 sin(2x—pB)+x sin(8)],

SPSTQT

arctaf[ —x+cog2a)]csq2a)}

xe[0,2 csc(B)sin(a)]
B'=4a—p

Be gf arctaf(1—x)cot(a)],

2
PSPQTQ

T 1
——arctar{é [—x+2 cos{za)]cso{za)])
X =2—(2+x)csc(2+p)sin(B), xe[2—sec(2),1]

B'=—2a—-B+w

s

Be

T
5=
PSQT

> +arctafcot2a)—(2—x)csq2a)],

arctarlj(l—x)co(a)]]
X' =(2—x)csc(2+ B)sin(B),xe(0,1)

B'=2a+p

w

,Be[o, > +arctar]jcot(Za)—(2—x)csc(2a)]]

sion throughR [see Fig. 8)]. Using Snell's law(7) it fol-
lows thatd X' =g(8,«)d X, where we defined

Vk?—cog(B)

<sin(B) 12

9(B, k)=

An initial displacement in momentum spad® is mapped
into the final displacemendP’ after the transmission
through R [see Fig. &)]. With dp,=dp, it follows that
dP’'=dP/g(B,«). The off-diagonal matrix elements are

zero. This, too, can be seen in Fig. 8: An initial displacement

in configuration space givesP’=0 and an initial displace-
ment in momentum space givesX’'=0. Thus the partial
stability matrix for transmission from , to A, is

9(B.«) 0
M= : 13
0 g 13
The partial stability matrix for transmission froy to A, is
MO ' The partial stability matrixv (" for internal reflec-
tion atR is given byM (=M (). The global stability matrix
M for an orbit 2 is now easily constructed. Suppo$k

crosses the RS boundamy times. Denote by (") the free-
motion partial stability matrix of) between transmissions
andi+1. Then

M=(—1)EMEMO--MOMIMEOMP T, (19)

whereB is the total number of bounces 6f including the
bounces ofR. Multiplying matrices we see that E(L4) has
the structure

A *

M=o 1/A)1

(15

where A andx are real numbers. For two successive cross-
ings with anglesB; and 8, one can show easily that

A=9(B1,x)19(B2,K).

Because of the structure of E@.5) the eigenvalues df1 are
real and given by\ and 1A. Thus, the periodic orbits of a
polygonal RS billiard are either marginally stable or un-
stable. Marginally stable orbits may occur in familiéer
example, the family of orbit81 in Fig. 5 or are isolated

(16)
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(a) nected with the appearence of Maslov phases. Because of the
y dx zero in one of the off-diagonal elements Mf together with
periodic < ~Q the requirement that the determinantMfhas to be 1, none
orbit )Amference of the diagonal elements d¥l can ever be zero. Thus we
B
B/ x

orbit have no caustics in our system.

H. Ergodicity and mixing

In this section we present numerical evidence for our con-
e jecture that TSBs, generally, are ergodic, sensitive, and mix-
ax ing. We checked ergodicity for T$B0.51) atE=1 by di-

viding its phase space into cells of siZzex=Ap,=1/n,

(b) n=40,50,70. We then performed the following numerical

experiment. We started a trajectory x{f’=0.3, p{¥=0.1
reference and mapped it foward in time. In every one of the three
orbit cases, i.e.n=40, 50, and 70, the trajectory visits all cells
after N,, applications of the Poincarmapping. We found
N4o=40 770, Ng5=111045, and N,,=206927. Thus,
within the limits of our check, TS§0.51) is ergodic.

A dynamical system is sensitive {Except for a set of
measure zenotwo trajectories started anywhere in phase
space within a distance will exceed a distancé (smaller
than the system dimensionis finite time[12]. A first indi-
cation of sensitivity is our observation that numerical accu-
racy is completely lost along typical orbits over a time scale
of several hundred Poincaneappings. More directly we did
the following numerical experiment. We defined 110 refer-
ence trajectories with initial ~conditionsx{y’=j/11,
pN=k/(6v2), j=1,...,10,k=—5,...,5. Foreach one of

(for example, the isolated orbiEl in Fig. 5. Generally, he reference trajectories we defined a close-by trajectory
margl_nally stable as well as unstabl_e_per|0d|c orbits ogcurxj,k(O):XJ(E), DS(?FD&?;)(JFG with e=10-8. The distance be-
Only in very spec!al polygc_)nal RS billiards _do we not find tween close-by trajectories and reference trajectories was
truly unstable periodic orbits. An example is a rectangularcOm uted according tod: (N) =[(x'{™ - x(V)2+ (p (N
step billiard withR as shown in Fig. 9: any trajectory that b 9 AT LAk ik Pxjk

P g y trel y —pNY2112 \whereN is the number of applications of Poin-
starts aiR with an angleB; will crossR again with an angle Pxjk K ] pplic
8, where sinB;)=sin(3,). Therefore, according to E¢1l6) ~ Carémappings. We found that for ajllk the distance; (N)

the modulus of the diagonal elementshofis equal to 1 and €xceededs—=0.1 after less tham =30 000 applicitiorlss of
all periodic orbits are marginally stable. Because of the prest—he Pomcaremappm_g. Thus, \.N'th. resp_ect te=10",
=0.1 and the specific trajectories investigated §&Bsen-

ence of truly unstable periodic orbits in the general case, Wé_
conjecture that generically polygonal RS billiards are er-Stive- _ o ,
godic. This conjecture is supported by the results of Sec. Il F._Further evidence for the sensitivity of TSBs derives from
(see Fig. J. Additional numerical evidence is presented in e Probability distributions of the matrix elements of the
Sec. Il H. stability matrixM. Let us denote bjM (V) the stability ma-

A second consequence of the structure of @) is the  trix (15 of a typical phase-space orbit of lendth Since for

. . . H N H H
absence of caustics. In quantum mechanics caustics are cohSBs the diagonal elements bf™ are its eigenvalues, the
probability distribution of the diagonal elements is a direct

indication of the sensitivity of the associated TSB. Accord-
ing to the structurg15) of MV it is sufficient to compute
the probability distributiorP(\) of A =In(AM). The result is
shown in Fig. 10 forN=100. P(\) is symmetric around
A =0. This means that the global Lyapunov exponent is zero.
We checked this statement directly by computing the global
Lyapunov exponent with the help of several long trajectories.
Thus, the KS entropy of TSBs is zero. The spikePgh) at
N=0 is due to the presence of marginally stable orbits. As
mentioned already in Sec. Il Gee also Fig. J7long trajec-
tories get “stuck” in the vicinity of marginally stable orbits
giving a large weight tqA|=1. The most important obser-
FIG. 9. A rectangular step billiard. Because of the right anglesvation in Fig. 10 is the bell shape of the distribution. This
(corner cubesformed by the boundaries of the billiard only mar- means that\ can get arbitrarily large with nonzero probabil-
ginally stable orbits exist. ity, which supports the sensitivity claim. Since there is no

FIG. 8. Geometrical construction for the calculation of the par-
tial stability matrix for the transmission throudh (a) for the cal-
culation of the first diagonal matrix element ati for the second
diagonal matrix element.
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0.40 — ‘ w Sec. Il D in the Fourier transform of scaled TSB energy
levels.
P L ]
A. Numerical method
020 | | The stationary Schrbnger equation for TSBs is given by
Hin(X,Y) =Eqin(X,Y), (18)
0.10 - q
- ,,.mﬂﬂﬂﬂm WHM where
0%%00 100 00 20.0 ~ d>  d?
A H:[_W_d_yz +V(X,y). (19

FIG. 10. Probability distributiorP(\) of the logarithm of the ) ) ) )
stability A=In(A™) computed from long TSP orbits for ~ Ihe potentiaV(x,y) is defined in Eq(2). We solve Eq(18)
N=100. in three steps(i) We solve for the stationary eigenfunctions

- . : a2 d?
reason to doubt that periodic orbits are dense in the TSB —————
phase space, TSBs are chaotic according to Devaney’s crite- dx® dy

fia of chaog12]. of an auxiliary problem defined as an isosceles triangle with
Furthermore we have numerical evidence that TSBs are

o . A L a= /4 and Dirichlet boundary conditiofd3]. (ii) With the
mixing. A dynamical system is mixing if in the limit—oo . o o ' .
we have help of a simple scaling in thg direction we define a basis

set{ ¢ (x,y)} on A given by

di(X,y)=E;di(X,y) (20

p(Pa(A)NB)=p(A)p(B). 17

~ 1
¢k(X,y): m d)k(xry/tan 01). (21)

Here, P, is then-times iterated PoincamappingP andp is

the invariant measure on the TSB phase space. We checke(lj] . .

Eq. (17) with the following numerical experiment with The set(21) is orthonormal onA according to

TSBy(1/2) atE=1 andn=100. We defined the phase-space _ _

set A as the rectangle 0€x<0.5, 0.kp,=<0.2 and set f fdxdy¢k(x,y)¢|(x,y)=5k|. (22
B=A. Next we ran 20 trajectories started >eff))=j/200, A
pg(?)=j/400, j=1,...,20 over N=10" applications of P
each. For each one of the 20 trajectories we checked
position in phase space in steps of 100 Poincaappings, N

which results invl = 20X N/1oq check points. .We found Fhat Pn(X,Y) =_2 am;si(x,y)_ (23

M ;=13 808 phase-space points outMf fell into A. This =1

way we obtained an approximation(A)=M;/M=6.9 ) ) o~ o~ _
X103 to the measure(A). Next we used thé/, phase- (Iv) We diagonalizeH in the basig ¢y(x,y)} and obtainEy,
space points that fell intoA as starting conditions and @nd#n(x,y). The advantage of this method is that it is ca-

mapped them forward= 100 steps. We found that this time pable of dealing with the boundary condition in a trivial way.
M,=106 points fell intoA. This way we obtain the ratio The disadvantage is that this method attempts to expand the

s=M,/M,=7.7x10"% as an approximation to _step potential of the TSB, a nondifferentiable functiolan.

p(P.(A)NA)/ p(A). The two ratios are close, supporting our mto a set of smooth functlons. Although possible in prin-

conjecture that generally TSBs are mixing. ciple, the convergence is slow. Nevertheless_ we use this
method because the advantage of easy handling by far out-
weighs the disadvantage of slow convergence.

itgii) We expandy, in the Zi basis:

Ill. QUANTUM MECHANICS

. . . . . B. Wave functions and spectral statistics
In this section we investigate the quantum mechanics of P

7. We will see that the morphology of TSB wave functions is  In order to identify classical orbits in the Fourier spectrum
very different from the appearance of split circle wave func-of the density of states, it is useful to solve the scaled Schro
tions presented if¥]. In Sec. Ill A we describe our numeri- dinger equatiof4,14], i.e., to solve the Schdinger equation
cal method. It is different from the method used [, for constantz. Wave functions for the scaled Schinger
though both rest on direct diagonalization. Although ineffi- equation for TSB and = 1/2 are shown as gray-scale plots
cient, direct diagonalization is the method of choice if bothin Fig. 11. The numbers adjacent to the plots correspond to
energy levels and wave functions are desired. In Sec. Ill Bhe quantum numberns of the wave functions. Apart from
we present some typical TSB wave functions. The RS corthe difference in the local wave number that trivially reflects
rection of the Weyl formula, derived and tested in the con-the two different values of the potential ih, and A, re-
text of a separable system|ig], is tested in Sec. Ill C inthe spectively, all wave functions in Fig. 11 are featureless and
context of a nonseparable chaotic TSB. The signatures dfomogeneously distributed over the interior of T,SBhis
Newtonian and non-Newtonian TSB orbits are identified inmeans that TSB wave functions behave very differently from
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61

FIG. 12. The wave function n=61 (unscaled for
150 200 T TSB,(3000). It scars the non-Newtonian orhit of Fig. 6.

:
OO

1 ‘. '.I!'t“vl.|.‘

— A
ME Vo) = a7 [ET(E=Vo)6(E—Vo)]

& y »
e -
~ L
< = 72 [VE+ VE=Vo8(E-Vy)]
FIG. 11. Gallery of wave functions for the scaled T,.SBith +R\/V_OV_R5(Z)+(C0rreCtion$, (29

n=1/2. The labels refer to the quantum numbewof the wave

function. Plotted is|y,(x,y)|. The darker the shade of grey, the where 6(x) is Heaviside’s step functior is the area of the
larger | ¢n(x,y)|. TSB, L=S+P and vgqz) is the RS correction derived in

the wave functions shown if#] for the circular RS billiard.  [2]- The variablez is z=1/. Additional corrections are
In [4] even at higher energies, most of the wave functionsSummarized in the term “corrections.” They are expected to
show regular structure. be small. In[2] the agreement of the analytical prediction for
An interesting feature in the TSB wave functions appears’rs With numerical data was demonstrated for a rectangular
at higher energies: the emergence of short-range correlatiof®S billiard with mixed boundary conditions. [i2] the RS
in the form of scarlet§15,16. Scarlets appear in random boundary is identical to one of the symmetry axes of the
wave functions of fixed energyl5] and support our conjec- billiard as shown in Fig. 9. This system consists only of
ture that TSB wave functions are “ergodic.” Scarlets alsomarginally stable orbits as demonstrated in Sec. Il G. The
appear in the high energy wave functions of hyberbolic bil-formula for vgg was not yet tested for a chaotic system. In
liards [17], which means that TSBs, to a certain extent,Fig. 13 we plotvgsas a function oz=1/7. The smooth line
mimic hyperbolic systems. In this context we computed thes the analytical RS correction, the jagged line is the numeri-
nearest neighbor spacing statistics for jSBVe found it 10 ca result forvgs computed for TSB(6000). The agreement
be Wigner-type. While this result is consistent with the con-is yery good. There is a small systematic deviation for large
jectured chaos of TSBs, it cannot be cited as a further argu; - gince largez corresponds to high energy, we attribute this

ment to support the claim of chaos, since it was sho¥8j deviation to a loss of accuracy in the computa-
that pseudointegrable triangles also exhibit Wigner-type sta- y P

tistics. We checked this result by computing the nearest
neighbor statistics for TS0), a pseudointegrable rational
triangle. After symmetry reduction we found its nearest
neighbor spacing statistics to be Wigner-type as expected. Vis

For E,,>V, wave functions for the unscaled problem look
very similar to the wave functions of the scaled problem
shown in Fig. 11. The only noteworthy exception we found
is the wave functiom=61 of TSK,(3000). It is shown in
Fig. 12. It may be interpreted as a scar corresponding to the
NN orbit d1 of Fig. 6. So far we have not seen regular
sequences of NN scars.

0.040

0.000

-0.040 - :
0.0 0.5 1.0 1.5 2.0
C. Test of the RS correction 4

The smoothed density of states for TSEE>{0) with FIG. 13. Test of the RS correction. The smooth line is the ana-
Dirichlet boundary conditions is given by the Weyl formula Iytical result computed if2]. The jagged line is the numerical
[3] result obtained for TS 6000) with Dirichlet boundary conditions.
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— — the orbitB1 produces a peak iR(l) at all, since forp=1/2

LF() it does not correspond to a periodic orbit. However, for
10.0 - i n=1/2 it is very close to periodic, and leaves its mark as a
distinct peak in Fig. 14. The action of the approximately
closed orbitB1 at »=1/2 differs from the value listed in
Table II. For »=1/2 it shifts to a value very close to the
5.0 1 position of the peak markedB1” in Fig. 14.
al IV. SUMMARY AND CONCLUSIONS
0'00_5 07 oig 1.1 113 ] 1‘,5 In this paper we presented a detailed classical and quan-

tum mechanical analysis of a clagsof triangular step bil-
FIG. 14. Fourier transform of the scaled energy spectrum ofliards. We showed analytically the absence of elliptic islands
TSB, with n=1/2. in the TSB phase space; i.e., TSBs do not possess any stable
orbits. There is at most a set of marginally stable orbits of
tion of high lying energy eigenvalues. Thus, the analyticallymeasure zero in phase space. We also presented numerical
derived RS correction passes a first test in the context of adications that TSBs are ergodic, sensitive, and mixing.
chaotic system. Thus, within the limits of our numerical tests, TSBs are cha-
otic. The KS entropy of TSBs was found to be zero. In the
D. Fourier transformation quantum mechanical part of this paper we presented a simple
method for the solution of the TSB Schilinger equation.
Using this method we computed quantum energy levels and
quantum wave functions for the scaled and unscaled TSB
rbroblems. The wave functions computed are distributed ho-
mogeneously over the surface of the billiard. This is in

The Gutzwiller trace formul@3] gives the fluctuating part
of the level density in terms of classical periodic orbits of a
two-dimensional system. The Gutzwiller formula has bee
extended to systems with ray splittifg]:

12+ marked contrast to the behavior of split circle wave functions

- 1 AT, , S .
ps(E)=Im{ — E T which show a fascinating variety of regular structures and
if g |Aj| 11— 1/Ai| scars. Thus TSB wave functions are very close to “ergodic,”

a feature expected for a completely chaotic system. We also
X expli[(Sj/h)+ 511}]- (25)  tested the RS correction to the Weyl formula in the context
of a chaotic system. Within the numerical accuracy the com-
puted RS correction is consistent with the analytical predic-
The summation is over all periodic orbits, Newtonian andtjon. Isolated non-Newtonian TSB orbits were identified in
non-Newtonian,§; is the action,T; the period, andA; is  the Fourier transform of the scaled density of states. As dem-
defined in Eq(15). Since TSBs do not have any caustisse  onstrated in Sec. Il and in Appendix A, many features of
Sec. Il G, Maslov phases are absent and only trivial phasegSBs can be computed analytically. Compared to the split
due to reflections contribute % . The quantityA; is given  circle billiard defined in[4] the particular strength of TSBs
by rests in their much simpler phase-space structure and easy
o . access to its analytical properties. In analogy to the experi-
ﬁ Iri|2 1—’[ 1—lro |2 26 ments of Ref[6] TSB’s can be realized experimentally with
et Fijl ey (1=rgP |, 20 the help of a triangularly shaped thin microwave cavity par-
tially filled with teflon. We hope that such experiments will
whereg; (7;) are the number of reflectioriransmissions ~ Soon be performed.
encountered by the periodic orQitandr;; is the reflection

coefficient at thath reflection. In order to identify periodic ACKNOWLEDGMENTS
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. . APPENDIX A
Because of the semiclassical form(®b) we expect peaks at

the scaled actioh of classical orbits. We Fourier transform  Consider the periodic orbit shown in Fig. 15. The orbit is
the scaled density of states because for consjahe quan- launched at¢ with momentump, into A,. The task is to
tities A; are independent . In Fig. 14 we shoWF(l)| for ~ computeé andp, as well as the action of the orbit explicitly
TSB, in the range 1/21<3/2 for »=1/2. The resulting as a function ofy andV,. The momentunp, can be com-
peaks inF(l) can be assigned to periodic orbits using Tableputed immediately. Withp' = 7/2— y, Snell's law of refrac-

Il: The two small peaks are due to the NN orkits andb1l  tion (7) relatese to y. We obtain

(see Fig. 6. The two large peaks are due to the Newtonian

orbits A1 andB1 (see Fig. . It is interesting to note that ps=sin(¢) =k cogy). (A2)
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FIG. 15. Sketch of the orbi€1.

Next we use the law of sines in the triangle spannewby,
and 3 to obtain

w=cog y)[sir?(y) V1+V, cof(y)—k cog(y)] L.
(A2)

2701
We apply the law of sines to the triangle spannedibgnd

&, With é=1- £ we obtain

£=1-2cod(y) . (A3)

K
1 -
" V14V, cof(y)

In order to compute the action of the periodic orbit shown in
Fig. 15 we also need andv. With w and &£ known explic-
itly, we apply the law of sines to the triangle spannedéby
andv and obtain

v=Ww¢. (A4)
The computation ofi is trivial:
u=¢ cogy). (A5)
The action of the periodic orbit is now given explicitly by

S=2(ku+tv+w). (AB)
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