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Ray splitting in a class of chaotic triangular step billiards

A. Kohler,* G. H. M. Killesreiter,† and R. Blümel‡

Fakultät für Physik, Universita¨t Freiburg, Hermann-Herder-Straße 3, D-79104 Freiburg, Germany
~Received 12 March 1997!

For a classT of triangular step billiards~TSBs! we prove analytically the absence of elliptic islands in phase
space. There is numerical evidence that TSBs are ergodic, sensitive, and mixing. Thus TSBs are chaotic,
although their Kolmogorov-Sinai entropy is zero. We study the quantum implications of ray splitting~RS! in
TSBs. The signature of non-Newtonian periodic RS orbits is identified in the Fourier transform of the TSB
level density. The RS correction of the Weyl formula is tested in the TSB context. In contrast to the rich
structure of split circle wave functions, TSB wave functions, except for the emergence of short-range corre-
lations in the form of scarlets, appear featureless and homogeneous.@S1063-651X~97!06109-6#

PACS number~s!: 05.45.1b
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I. INTRODUCTION

Ray splitting may occur in all wave systems with sharp
defined interfaces. Light rays, e.g., are split into transmit
and reflected rays at the interface between two dielect
with different index of refraction, and acoustic waves gen
ated by an earthquake experience ray splitting at fault lin
Apart from optics and acoustics ray-splitting~RS! phenom-
ena occur, e.g., in hydrodynamics, microwaves, and quan
mechanics. Thus, ray splitting is universal. Its wave implic
tions, however, have only recently been investigated. Cou
manet al. @1# studied ray splitting in the context of acoust
and quantum chaos. Prangeet al. @2# computed analytically
the RS correction to the Weyl formula@3#. Blümel et al.
@4,5# investigated RS phenomena in a chaotic circular s
billiard. They identified the signatures of non-Newtonian R
orbits in the Fourier transform of the scaled level dens
thereby demonstrating the importance of periodic n
Newtonian RS orbits for trace formulas pertaining to R
systems. Recently Sirkoet al. @6# identified experimentally
the signatures of non-Newtonian RS orbits in the resona
spectra of a microwave cavity partially filled with Teflon.

In this paper we study the classical and quantum mech
ics of a classT of triangular step billiards~TSBs!. Without
the potential step these billiards are pseudointegrable@7#.
With the potential step, TSBs are chaotic. We show that
TSB phase-space structure is simpler than the mixed p
space of circular step billiards. There are, e.g., no ellip
islands in the phase space of TSBs. We present a clas
analysis ofT in Section II. The quantum mechanics ofT is
investigated in Sec. III. Section IV summarizes our findin
and concludes the paper.

II. CLASSICAL MECHANICS

A TSB consists of a mass pointm bouncing inside a
triangular enclosure divided into two domains by an R
boundaryR ~see Fig. 1!. A typical TSB is shown in Fig. 1~a!.

*Electronic address: ako@phyc1.physik.uni-freiburg.de
†Electronic address: killes@phyc1.physik.uni-freiburg.de
‡Electronic address: blumel@phyc1.physik.uni-freiburg.de
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One of the two domains is kept at potentialV50, while the
other is kept atV5V0.0. Thus, a discontinuous step of th
potential occurs alongR, which, in a quantum treatment o
the TSB, gives rise to RS phenomena analyzed in deta
Sec. III. While a complete analysis of arbitrary TSBs is po
sible, it is not necessary for our purposes. In this paper
investigate a restricted setT of TSBs defined in Sec. II A. In
Sec. II B we introduce the bouncing rule, which states that
orbit started anywhere inside a TSBPT has to reach the RS
boundaryR after a finite number of bounces with the sides
the TSB. The bouncing rule is purely geometric. In Sect
II C we extend the bouncing rule to the crossing rule, wh
states that, given a certain condition, any orbit in a TSBPT
actually has to crossR after a finite number of ‘‘trials.’’ The

FIG. 1. Triangular step billiards~TSBs!. ~a! A general TSB. The
ray-splitting boundaryR separates the two domains of the billia
with V50 ~the white region inside the TSB! and V5V0.0 ~the
grey region inside the TSB!. ~b! A special TSBPT, the class of RS
billiards considered in this paper.
2691 © 1997 The American Physical Society
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crossing rule is a dynamic rule. Because of the possibility
total classical internal reflection discussed in Sec. II A,
bouncing rule does not imply the crossing rule. In Sec. I
we introduce a symbolic dynamics for coding TSB trajec
ries. In Sec. II E we present Newtonian and non-Newton
periodic TSB orbits. In Sec. II F we construct the Poinca´
mapping of the TSB. Here we make decisive use of
crossing rule when choosingR as our surface of section. I
Sec. II G we prove the absence of elliptic islands of a
order in the TSB phase space. Visual inspection of the T
surface of section corroborated by a more detailed nume
analysis presented in Sec. II H indicates that TSBs are
godic, sensitive, and mixing. Thus TSBs are chaotic, a
with zero Kolmogorov-Sinai~KS! entropy.

A. Definitions

A typical member of the restricted setT of TSBs consid-
ered in this paper is shown in Fig. 1~b!. It is defined by the
following requirements.~i! Only isosceles triangles are con
sidered. ~ii ! The base angleg is restricted to the range
p/3,g,p/2. ~iii ! The RS boundaryR is orthogonal to the
baseline of the TSB and divides the TSB into two domains
equal size. The RS boundary is assumed to be rectilin
throughout this paper, although curved RS boundaries
certainly interesting and deserve further investigation. T
sides of a given TSBPT are labeled with the lettersS, P, Q,
andT. Throughout this paper we choose units such that
length of the RS boundary is 1,m51/2 and\51. Thus,
according to Fig. 1~b!, R5$(x,y50):0<x<1%. Although
according to their definition the lettersP, Q, R, S, and T
denote point sets, we will also use them in Sec. II D as
symbols of a symbolic dynamics for the TSB. This is po
sible since a confusion between point sets and symbols o
alphabet seems unlikely. Often we will have to focus on
specific TSBPT. We choose quite arbitrarily the TSB wit
g57p/20 and denote it by TSB0(V0). TSB0(V0) is a ratio-
nal triangle, pseudointegrable forV050 @7#. For V0Þ0 this
property is lost and TSB0(V0.0) is chaotic~see Sec. II H!.
Denoting the interior of the TSB byD, we define the uppe
and lower parts of the TSB according to

Du5$~x,y!PD:y.0%,

D l5$~x,y!PD:y,0%, ~1!

respectively. The potential experienced by the parti
bouncing inside the TSB is given by

V~x,y!5H 0, ~x,y!PDu

V0 , ~x,y!PD l

`, ~x,y!¹D .

~2!

In the units defined above, the classical Hamiltonian funct
is given by

H5E5px
21py

21V~x,y!. ~3!

In either part of the TSB,Du or D l , the motion of the par-
ticle is free @¹W V(x,y)50 in Du ,D l ] with specular reflec-
tions at the outer boundaries of the TSB. The refract
transmission throughR ~see Fig. 2! is found by minimizing
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the action. This results in Snell’s law of refraction. We no
that because of¹xV50 onR we havepx5px8. From Eq.~3!
it follows immediately that

AEsin~w!5AE2V0sin~w8!. ~4!

Defining

h5V0 /E ~5!

and

k5A12h, ~6!

Snell’s law ~4! becomes

sin~w!5ksin~w8!. ~7!

If the particle originates inD l , it is transmitted throughR
according to Eq.~4! no matter what its incident angle. De
pending on its incident angle a particle orginating inDu is
either transmitted according to Eq.~4!, or it is specularly
reflected atR and thrown back intoDu . This latter case is
called classical internal reflection. It occurs whenev
w.wc , wherewc is the critical angle given by

sin~wc!5k. ~8!

B. Bouncing rule

In this section we prove the bouncing rule for TSBsPT: a
trajectory started anywhere inD reachesR after N<3
bounces. First we focus on a trajectory started inDu . There
are three possibilities for its orbit.~i! The trajectory bounces
off P, ~ii ! the trajectory bounces offS, ~iii ! it reachesR.
There is nothing to be proved in case~iii !. Case~i! and case
~ii ! have to be considered further. First we focus on case~i!.
There are two ways of following the itinerary of a trajector
Either we plot its zigzag path withinDu , or we represent it
as a straight line in the plane reflecting the triangle at the s
of impact. We choose the latter way. The subsequent refl
tions relevant to case~i! are shown in Fig. 3~a!. The diagram
was drawn for the limiting angle of TSBs inT, g5p/3.
Drawing a straight line through an arbitrarily chosen point

FIG. 2. Refraction of a classical orbit with momentumpW when
crossing from a region with potentialV50 through a ray-splitting
boundaryR into a region withV5V0.0. The relation between the
incident anglew and the final anglew8 is given by Snell’s law.
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56 2693RAY SPLITTING IN A CLASS OF CHAOTIC . . .
Du and an arbitrary point onP we see that forg.p/3 the
straight line intersects with a replica ofR after at mostN53
intersections with replicas ofP or S. This proves the bounc
ing rule for case~i!. The relevant diagram for case~ii ! is
shown in Fig. 3~b!. Again it is obvious thatN<3. This con-
cludes the proof of the bouncing rule forDu . The proof for
D l runs along identical lines, thus proving the bouncing r
for D.

C. Crossing criterion and crossing rules

Because of the bouncing rule proved in Sec. II B an or
started anywhere inD will reach R after no more than three
bounces with the outer boundaries of the TSB. But beca
of the possibility of classical internal reflection, reachingR
does not imply crossingR. Only if the trajectory originates
in D l does reachingR actually imply crossingR into Du . For
this case we formulate the following crossing rule: a traj
tory started inD l will cross R into Du after no more than
three bounces with the sides ofD. It is impossible to formu-
late a similar rule forDu . In fact, for sufficiently largeV0
there is always at least one orbit forever confined toDu .
However, complete deconfinement of trajectories is achie
if the following crossing criterion is fulfilled:wc.a. In or-
der to prove it we consider the following case: a trajectory
internally reflected inx0 with w0.wc ~see Fig. 4!. We fol-
low this trajectory to the left. The trajectory hitsR again in
x1 with incident anglew1 . If the momentum in thex direc-
tion is positive inx1 the trajectory will cross the RS bound
ary, because in this casew1,a,wc . If the momentum in
the x direction is negative inx1 , w15w022a. There are

FIG. 3. Replicas ofDu of a TSB for proving the bouncing rule
~a! The first encounter of a trajectory started inDu is with the side
P of the TSB.~b! The first encounter is with the sideS.
e
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three possible cases.~i! w1.wc , ~ii ! w15wc , and ~iii !
w1,wc . In the third case the trajectory crossesR. In the
second case, technically, the trajectory crosses too. A
crossing it runs parallel toR in D l at a distancee→0 from R
and corresponds to a ‘‘lateral ray’’@4#. Lateral rays are not
considered further in this paper. In the first case,w1,w0 ,
but the trajectory is again internally reflected. Repeating
above procedure, the trajectory will continue to the left. A
ter a finite numbern of bounces we havewn5w022na
,wc and the trajectory crossesR. If the trajectory emerges
at x0 to the right withw0 the situation does not change, sin
after a finite number of internal reflections the particle e
counters the corner cube spanned byR andP and reverses its
momentum inx direction. From this point on, the abov
proof applies. Given the crossing criterion this proves
crossing rule inD. Along the same lines it is possible t
prove that a particle bouncing inside TSB0 has to crossR
after at most one total internal reflection.

D. Symbolic dynamics

We code trajectories of the TSB according to their e
counters withR or the sides ofD, respectively. Therefore the
alphabet of a possible symbolic dynamics for the TSB c
sisits of the set of letters$P,Q,R,S,T%. Every time a trajec-
tory is reflected atR its symbol string aquires the new lette
‘‘ R. ’’ If it crosses R, no new letter is added to the symb
string. The symbolic description is especially useful for
beling periodic orbits. It is sufficient to label any possib
orbit of the TSB. However, not all possible symbol strin
correspond to TSB orbits. Grammatical restrictions app
The simplest grammatical rules are summarized in Tabl
We see that repetitions of letters such asSS,PP,TT,QQ,RR
are forbidden. Sequences withPQ andQP are not possible
either, because a transmission throughR cannot change the
sign of the momentum in thepx direction. Because interna
reflection is only possible inDu , combinations such as
QR,TR,RQ,RT are not allowed. Besides these simple ru
there are more complicated grammar

FIG. 4. A trajectory, internally reflected inx0 with angle w0

continues to the left to reachR in x1 with anglew1 .

TABLE I. The Markov matrix with the simplest grammar rule
for TSBs.

S P T Q R

S 0 1 1 1 1
P 1 0 1 0 1
T 1 1 0 1 0
Q 1 0 1 0 0
R 1 1 0 0 0
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2694 56A. KOHLER, G. H. M. KILLESREITER, AND R. BLÜMEL
rules. The sequencesRPT,TPT,RPR,TPR do not exist be-
cause a bounce atP with positive momentum in they direc-
tion is always followed by a bounce atS. A similar argument
shows thatSQSis forbidden. Apart from the grammar rule
there are parameter dependent pruning rules. But their
cussion is not needed for the purposes of this paper.

E. Periodic orbits

There are two major types of periodic orbits in TSB
Newtonian and non-Newtonian. We label Newtonian orb
with capital letters, non-Newtonian~NN! orbits with lower
case letters. Three examples of short Newtonian orbits
shown in Fig. 5. Among other periodic orbits they are list
in Table II together with their symbolic codes and stabil
properties. We note that the Newtonian orbitsA1 andC1 in
Fig. 5 exist over a large interval ofV0 values. The orbit
B1, however, exists only for a very specific value ofV0 ,
which depends ong. We will return to this observation in
Sec. III D. Apart from NN orbits discussed below the Ne
tonian orbits are a major ingredient for predicting the qu
tum level density of the TSB on the basis of the modifi
Gutzwiller trace formula suggested in@1#. Many more peri-
odic orbits than those listed in Table II are necessary fo
proper check of the modified Gutzwiller trace formula.
possible method for finding them is the one studied in@8#
and already successfully applied in@9#. In this paper, how-
ever, we are content with identifying short Newtonian orb
in the Fourier transform of the TSB level density~see Sec.
III D !.

NN orbits are orbits that are reflected atR where, accord-
ing to Newtonian mechanics, they should have been tra
mitted. Every time the trajectory hits the RS boundary ori
nating inD l , or in Du with w,wc , it ‘‘decides’’ whether to
cross or to turn around on the basis of the quantum reflec
coefficients. This implies a loss of determinism, a feat
that contrasts with Newtonian mechanics. Nevertheless th
orbits are important for the quantum spectrum. Three se
of NN orbits are shown in Fig. 6, ordered according to
creasing action of their first member. Initial conditions th
generate thean series displayed in the first row of Fig.
are xn51, pxn52AE2V0 cos(p/22na), pyn,0, n
is-
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51,2, . . . . Another series of NN orbits, thebn series, is
shown in the second row of Fig. 6. This series is topolo
cally the same as thean series, but the action of the orbit
differs by a factor 1/AE2V0. Initial conditions that generate
the bn series arexn51, pxn52AE cos(p/22na), pyn.0.
For these simple NN orbits the initial conditions are indepe
dent ofh. The global dynamics of NN orbits is rather com
plex. The symbolR can be used for all types of reflection
the RS boundary, i.e., for both internal and NN reflections
order to apply the method introduced in@8# to NN orbits it is
necessary to introduce a classification for the NN orbits s
that each class by itself is deterministic. Following an inve
tigation of grammar rules, the method of@8# can be used for
each class of NN orbits separately. Because of the sim
structure of TSBs, location and shape of many of the p
odic TSB orbits can be computed analytically. This is de
onstrated in Appendix A where we compute analytically a
explicitly all characteristics of the Newtonian orbitC1.

F. Poincarémap

There are several possibilities for defining a Poincare´ sur-
face of section~PSS! for the TSB. We chooseR because—as
long as the crossing criterion is fullfilled—every orbit inD
eventually crossesR ~see Sec. II C!. Concerning the con-
struction of the Poincare´ map we record a section poin
whenever a trajectory crossesR with positive momentum in
the y direction. Total internal reflection points do not corr
spond to section points. As coordinates on the PSS
choose thex coordinate onR and thex componentpx of the
momentum inDu . An example of a PSS, the PSS fo
TSB0(1/2) at E51, is shown in Fig. 7~a!. Because of total
internal reflection the maximum ofupxu is 1/&. We gener-
ated the PSS by starting a single trajectory with coordin

FIG. 5. Short Newtonian orbits of TSB0 .
-
TABLE II. The stability Lp , the actionSp , and the timeTp for the shortest non-Newtonian and New
tonian periodic orbits for TSB0~1/2!.

Periodic orbit Alphabet x px Lp Sp Tp

a1 RQT 1 20.321 1 0.642 0.642
a2 RTQRT 1 20.572 1 0.932 0.932
a3 TRTQRTR 1 20.698 1 1.397 1.397
b1 RPS 1 20.454 1 0.908 0.454
b2 RSPRS 1 20.809 1 1.319 0.659
b3 SRSPRSR 1 20.988 1 1.975 0.988
c1 TRQTQR xP(0.74,1) 20.321 1 1.284 1.284
d1 SRPSPR xP(0.74,1) 20.454 1 1.816 0.908
A1 SQT 0.469 20.208 22.243 1.338 1.083
A1 STQ 0.617 20.669 22.243 1.338 1.083
B1 STQT(h50.403) xP(0,0.630) 20.454 11 1.543 1.219
C1 SRPSTSPRST 0.314 10.321 21 1.910 1.056
D1 SRPSTSPRST xP(0,0.627) 10.321 11 3.820 2.112
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56 2695RAY SPLITTING IN A CLASS OF CHAOTIC . . .
x51/2 and momentumpx51/5 and iterating itN5106

times. Visual inspection of the resulting PSS indicates t
TSB0(1/2) is chaotic. The horizontal structure atpx'0.32 is
due to a family of marginally stable periodic orbits shown
Fig. 7~b!. If the trajectory joins the neighborhood of a ma
ginally stable orbit its local Lyapunov exponent becom
very small and it stays some time in the neighborhood of
marginally stable orbit. This generates the horizontal str
ture seen in Fig. 7~a!. It is proved analytically in Sec. II G
that the PSS of a TSB does not contain any elliptic islan
Thus for a larger number of iterations (N@106) the ‘‘white
area’’ of the horizontal structure in Fig. 7~a! gradually fills
in.

FIG. 6. Short non-Newtonian orbits of TSB0 .

FIG. 7. ~a! Poincare´ surface of section for TSB0(1/2) with
E51. The motion is chaotic over all of the dynamically accessi
phase space. The horizontal structure atpx'0.32 is due to a one-
parameter family of marginally stable orbits of the type shown
~b!.
t

s
is
-

s.

It is possible to state the Poincare´ map P of the TSB
explicitly with the help of closed analytical expressions. T
this end we define the angleb between the trajectory andR
according topx5cos(b). The Poincare´ map is then com-
posed of four parts:P5P4P3P2P1 . The mappingP1 traces
the trajectories starting onR with positive momentum in the
y direction until it hitsR again with a momentum which doe
not allow internal reflection. The possible symbol strings
P1 and the corresponding mappings forx andb are shown in
Table III. The intervals forx andb give the starting points in
the PSS that yield the corresponding symbol string. T
mappingP2 represents the transmission throughR, which is
described by Eq.~7!. The mappingP3 is essentially the same
asP1 . The mappingP4 is again described by Eq.~7!. Be-
cause of the bouncing and the crossing rules the numbe
possible symbols in Table III is finite and small. This is th
main reason for restricting our investigations to the classT of
TSBs.

G. Absence of elliptic islands

The following proof is not restricted to TSBs. It applies
all polygonal RS billiards and rests on the structure of
stability matrix. The stability matrix of a two-dimensiona
system is a 434 matrix. In Hamiltonian systems it can b
reduced to a 232 matrix @10#. This is achieved by choosing
local coordinates that are, respectively, perpendicular
parallel to the orbit in configuration space and in moment
space. The matrix elements for the coordinates parallel to
orbit are then trivial. The stability matrix in local coordinate
then describes the time dependence of an initial displacem
of the starting point perpendicular to the orbit (dX,dP) ac-
cording to

S dX8
dP8 D5M S dX

dPD . ~9!

For billiards withV50 the stability matrix is derived in@11#.
For step billiards there are four different types of motio
free, reflection at the outer boundaries ofD, reflection atR,
and transmission throughR. Therefore it is convenient to
represent the total stability matrixM of an orbit as the prod-
uct of partial matrices that correspond to the different typ
of motion encountered by the orbit in the course of its h
tory. The partial stability matrixM ( f ) for free ~rectilinear!
motion is given by

M ~ f !5S 1 l

0 1D , ~10!

where l 5L/AE2V is the optical path length of the trajec
tory with L denoting its geometric length. The partial stab
ity matrix M (r ) for reflection is given by

M ~r !5S 21 0

0 21D . ~11!

The partial stability matrixM (t) for transmission throughR
can be calculated on the basis of simple geometrical con
erations. An initial displacement in configuration spacedX is
mapped into the final displacementdX8 after the transmis-
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TABLE III. Analytical expressions~second column! for the free-motion part~characterized by its symbo
listed in the first column! of the TSB Poincare´ mapping.

Alphabet x8,b8

S,T x852@x csc(2a2b)sin(b)#, xP(0,1)
b852a2b1p

bPXp
2

2arctan$@2x1cos~2a!#csc~2a!%,pC
SP,TQ x8521x csc(2a2b) sin(b), xP(0,1)

b8522a1b

bPXp
2

2arctanH12 @2x12 cos~2a!#csc~2a!J,
p

2
2arctan$@2x1cos~2a!#csc~2a!%

SPS,TQT x85csc(4a2b)@2 sin(2a2b)1x sin(b)#,
xP@0,2 csc(3a)sin(a)#
b854a2b

bPXp
2

2arctan@~12x!cot~a!#,

p

2
2arctanH12 @2x12 cos~2a!#csc~2a!JC

PSP,QTQ x8522(21x)csc(2a1b)sin(b), xP@22sec(2a),1#

b8522a2b1p

bPHp2 1arctan@cot~2a!2~22x!csc~2a!#,

p

2
2arctan@~12x!cot~a!#J

PS,QT x85(22x)csc(2a1b)sin(b),xP(0,1)
b852a1b

bPH0,
p

2
1arctan@cot~2a!2~22x!csc~2a!#J
e
en

ss-

n-
sion throughR @see Fig. 8~a!#. Using Snell’s law~7! it fol-
lows thatdX85g(b,k)dX, where we defined

g~b,k!5
Ak22cos2~b!

ksin~b!
. ~12!

An initial displacement in momentum spacedP is mapped
into the final displacementdP8 after the transmission
through R @see Fig. 8~b!#. With dpx5dpx8 it follows that
dP85dP/g(b,k). The off-diagonal matrix elements ar
zero. This, too, can be seen in Fig. 8: An initial displacem
in configuration space givesdP850 and an initial displace-
ment in momentum space givesdX850. Thus the partial
stability matrix for transmission fromDu to D l is

M ~ t !5S g~b,k! 0

0 1/g~b,k!
D . ~13!

The partial stability matrix for transmission fromD l to Du is
M (t)21

. The partial stability matrixM (ir) for internal reflec-
tion atR is given byM (ir)5M (r ). The global stability matrix
M for an orbit V is now easily constructed. SupposeV
t

crosses the RS boundarym times. Denote byMi
( f ) the free-

motion partial stability matrix ofV between transmissionsi
and i 11. Then

M5~21!BMm
~ f !Mm

~ t !•••M2
~ f !M2

~ t !M1
~ f !M1

~ t !21
, ~14!

whereB is the total number of bounces ofV including the
bounces offR. Multiplying matrices we see that Eq.~14! has
the structure

M5S L !

0 1/L D , ~15!

whereL and! are real numbers. For two successive cro
ings with anglesb1 andb2 one can show easily that

L5g~b1 ,k!/g~b2 ,k!. ~16!

Because of the structure of Eq.~15! the eigenvalues ofM are
real and given byL and 1/L. Thus, the periodic orbits of a
polygonal RS billiard are either marginally stable or u
stable. Marginally stable orbits may occur in families~for
example, the family of orbitsB1 in Fig. 5! or are isolated
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~for example, the isolated orbitC1 in Fig. 5!. Generally,
marginally stable as well as unstable periodic orbits occ
Only in very special polygonal RS billiards do we not fin
truly unstable periodic orbits. An example is a rectangu
step billiard withR as shown in Fig. 9: any trajectory tha
starts atR with an angleb1 will crossR again with an angle
b2 where sin(b1)5sin(b2). Therefore, according to Eq.~16!
the modulus of the diagonal elements ofM is equal to 1 and
all periodic orbits are marginally stable. Because of the pr
ence of truly unstable periodic orbits in the general case,
conjecture that generically polygonal RS billiards are
godic. This conjecture is supported by the results of Sec.
~see Fig. 7!. Additional numerical evidence is presented
Sec. II H.

A second consequence of the structure of Eq.~15! is the
absence of caustics. In quantum mechanics caustics are

FIG. 8. Geometrical construction for the calculation of the p
tial stability matrix for the transmission throughR ~a! for the cal-
culation of the first diagonal matrix element and~b! for the second
diagonal matrix element.

FIG. 9. A rectangular step billiard. Because of the right ang
~corner cubes! formed by the boundaries of the billiard only ma
ginally stable orbits exist.
r.

r

s-
e
-
F

on-

nected with the appearence of Maslov phases. Because o
zero in one of the off-diagonal elements ofM together with
the requirement that the determinant ofM has to be 1, none
of the diagonal elements ofM can ever be zero. Thus w
have no caustics in our system.

H. Ergodicity and mixing

In this section we present numerical evidence for our c
jecture that TSBs, generally, are ergodic, sensitive, and m
ing. We checked ergodicity for TSB0(0.51) atE51 by di-
viding its phase space into cells of sizeDx5Dpx51/n,
n540,50,70. We then performed the following numeric
experiment. We started a trajectory atx(0)50.3, px

(0)50.1
and mapped it foward in time. In every one of the thr
cases, i.e.,n540, 50, and 70, the trajectory visits all cel
after Nn applications of the Poincare´ mapping. We found
N40540 770, N505111 045, and N705206 927. Thus,
within the limits of our check, TSB0(0.51) is ergodic.

A dynamical system is sensitive if~except for a set of
measure zero! two trajectories started anywhere in pha
space within a distancee will exceed a distanced ~smaller
than the system dimensions! in finite time @12#. A first indi-
cation of sensitivity is our observation that numerical acc
racy is completely lost along typical orbits over a time sc
of several hundred Poincare´ mappings. More directly we did
the following numerical experiment. We defined 110 refe
ence trajectories with initial conditionsxjk

(0)5 j /11,
px jk

(0)5k/(6&), j 51, . . . ,10,k525, . . . ,5. Foreach one of
the reference trajectories we defined a close-by trajec
xjk8

(0)5xjk
(0) , px jk

(0)5px jk
(0)1e with e51028. The distance be-

tween close-by trajectories and reference trajectories
computed according todjk(N)5@(xjk8

(N)2xjk
(N))21(px jk8(N)

2px jk
(N))2#1/2, whereN is the number of applications of Poin

carémappings. We found that for allj ,k the distancedjk(N)
exceededd50.1 after less thanN530 000 applications of
the Poincare´ mapping. Thus, with respect toe51028,
d50.1 and the specific trajectories investigated TSB0 is sen-
sitive.

Further evidence for the sensitivity of TSBs derives fro
the probability distributions of the matrix elements of th
stability matrix M . Let us denote byM (N) the stability ma-
trix ~15! of a typical phase-space orbit of lengthN. Since for
TSBs the diagonal elements ofM (N) are its eigenvalues, the
probability distribution of the diagonal elements is a dire
indication of the sensitivity of the associated TSB. Accor
ing to the structure~15! of M (N) it is sufficient to compute
the probability distributionP(l) of l5 ln(L(N)). The result is
shown in Fig. 10 forN5100. P(l) is symmetric around
l50. This means that the global Lyapunov exponent is ze
We checked this statement directly by computing the glo
Lyapunov exponent with the help of several long trajectori
Thus, the KS entropy of TSBs is zero. The spike ofP(l) at
l50 is due to the presence of marginally stable orbits.
mentioned already in Sec. II F~see also Fig. 7! long trajec-
tories get ‘‘stuck’’ in the vicinity of marginally stable orbits
giving a large weight touLu51. The most important obser
vation in Fig. 10 is the bell shape of the distribution. Th
means thatL can get arbitrarily large with nonzero probab
ity, which supports the sensitivity claim. Since there is

-
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reason to doubt that periodic orbits are dense in the T
phase space, TSBs are chaotic according to Devaney’s c
ria of chaos@12#.

Furthermore we have numerical evidence that TSBs
mixing. A dynamical system is mixing if in the limitn→`
we have

r„Pn~A!ùB…5r~A!r~B!. ~17!

Here,Pn is then-times iterated Poincare´ mappingP andr is
the invariant measure on the TSB phase space. We che
Eq. ~17! with the following numerical experiment with
TSB0(1/2) atE51 andn5100. We defined the phase-spa
set A as the rectangle 0.4<x<0.5, 0.1<px<0.2 and set
B5A. Next we ran 20 trajectories started atxj

(0)5 j /200,
px j

(0)5 j /400, j 51, . . . ,20 over N5107 applications ofP
each. For each one of the 20 trajectories we checked
position in phase space in steps of 100 Poincare´ mappings,
which results inM5203N/100 check points. We found tha
M 1513 808 phase-space points out ofM fell into A. This
way we obtained an approximationr (A)5M1 /M56.9
31023 to the measurer(A). Next we used theM1 phase-
space points that fell intoA as starting conditions an
mapped them forwardn5100 steps. We found that this tim
M25106 points fell intoA. This way we obtain the ratio
s5M2 /M157.731023 as an approximation to
r„Pn(A)ùA…/r(A). The two ratios are close, supporting o
conjecture that generally TSBs are mixing.

III. QUANTUM MECHANICS

In this section we investigate the quantum mechanics
T. We will see that the morphology of TSB wave functions
very different from the appearance of split circle wave fun
tions presented in@4#. In Sec. III A we describe our numeri
cal method. It is different from the method used in@4#,
though both rest on direct diagonalization. Although ine
cient, direct diagonalization is the method of choice if bo
energy levels and wave functions are desired. In Sec. I
we present some typical TSB wave functions. The RS c
rection of the Weyl formula, derived and tested in the co
text of a separable system in@2#, is tested in Sec. III C in the
context of a nonseparable chaotic TSB. The signature
Newtonian and non-Newtonian TSB orbits are identified

FIG. 10. Probability distributionP(l) of the logarithm of the
stability l5 ln(L(N)) computed from long TSB0 orbits for
N5100.
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Sec. III D in the Fourier transform of scaled TSB ener
levels.

A. Numerical method

The stationary Schro¨dinger equation for TSBs is given b

Ĥcn~x,y!5Encn~x,y!, ~18!

where

Ĥ5F2
d2

dx2 2
d2

dy2G1V~x,y!. ~19!

The potentialV(x,y) is defined in Eq.~2!. We solve Eq.~18!
in three steps.~i! We solve for the stationary eigenfunction

F2
d2

dx2 2
d2

dy2Gf i~x,y!5Eif i~x,y! ~20!

of an auxiliary problem defined as an isosceles triangle w
a5p/4 and Dirichlet boundary conditions@13#. ~ii ! With the
help of a simple scaling in they direction we define a basi
set$f̃k(x,y)% on D given by

f̃k~x,y!5
1

Atan a
fk~x,y/tan a!. ~21!

The set~21! is orthonormal onD according to

E
D
E dxdyf̃k~x,y!f̃ l~x,y!5dkl . ~22!

~iii ! We expandcn in the f̃ i basis:

cn~x,y!5(
i 51

N

anif̃ i~x,y!. ~23!

~iv! We diagonalizeH̃ in the basis$f̃k(x,y)% and obtainEn
andcn(x,y). The advantage of this method is that it is c
pable of dealing with the boundary condition in a trivial wa
The disadvantage is that this method attempts to expand
step potential of the TSB, a nondifferentiable function onR,
into a set of smooth functions. Although possible in pri
ciple, the convergence is slow. Nevertheless we use
method because the advantage of easy handling by far
weighs the disadvantage of slow convergence.

B. Wave functions and spectral statistics

In order to identify classical orbits in the Fourier spectru
of the density of states, it is useful to solve the scaled Sch¨-
dinger equation@4,14#, i.e., to solve the Schro¨dinger equation
for constanth. Wave functions for the scaled Schro¨dinger
equation for TSB0 andh51/2 are shown as gray-scale plo
in Fig. 11. The numbers adjacent to the plots correspond
the quantum numbersn of the wave functions. Apart from
the difference in the local wave number that trivially reflec
the two different values of the potential inDu and D l , re-
spectively, all wave functions in Fig. 11 are featureless a
homogeneously distributed over the interior of TSB0. This
means that TSB wave functions behave very differently fr
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the wave functions shown in@4# for the circular RS billiard.
In @4# even at higher energies, most of the wave functio
show regular structure.

An interesting feature in the TSB wave functions appe
at higher energies: the emergence of short-range correla
in the form of scarlets@15,16#. Scarlets appear in random
wave functions of fixed energy@15# and support our conjec
ture that TSB wave functions are ‘‘ergodic.’’ Scarlets al
appear in the high energy wave functions of hyberbolic b
liards @17#, which means that TSBs, to a certain exte
mimic hyperbolic systems. In this context we computed
nearest neighbor spacing statistics for TSB0. We found it to
be Wigner-type. While this result is consistent with the co
jectured chaos of TSBs, it cannot be cited as a further a
ment to support the claim of chaos, since it was shown@18#
that pseudointegrable triangles also exhibit Wigner-type
tistics. We checked this result by computing the near
neighbor statistics for TSB0(0), a pseudointegrable rationa
triangle. After symmetry reduction we found its neare
neighbor spacing statistics to be Wigner-type as expecte

For En.V0 wave functions for the unscaled problem loo
very similar to the wave functions of the scaled proble
shown in Fig. 11. The only noteworthy exception we fou
is the wave functionn561 of TSB0(3000). It is shown in
Fig. 12. It may be interpreted as a scar corresponding to
NN orbit d1 of Fig. 6. So far we have not seen regu
sequences of NN scars.

C. Test of the RS correction

The smoothed density of states for TSBs (E.0) with
Dirichlet boundary conditions is given by the Weyl formu
@3#

FIG. 11. Gallery of wave functions for the scaled TSB0 with
h51/2. The labels refer to the quantum numbern of the wave
function. Plotted isucn(x,y)u. The darker the shade of grey, th
larger ucn(x,y)u.
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N̄~E,V0!5
A

8p
@E1~E2V0!u~E2V0!#

2
L

4p
@AE1AE2V0u~E2V0!#

1RAV0n̄RS~z!1~corrections!, ~24!

whereu(x) is Heaviside’s step function,A is the area of the
TSB, L5S1P and n̄RS(z) is the RS correction derived in
@2#. The variablez is z51/h. Additional corrections are
summarized in the term ‘‘corrections.’’ They are expected
be small. In@2# the agreement of the analytical prediction f
n̄RS with numerical data was demonstrated for a rectangu
RS billiard with mixed boundary conditions. In@2# the RS
boundary is identical to one of the symmetry axes of
billiard as shown in Fig. 9. This system consists only
marginally stable orbits as demonstrated in Sec. II G. T
formula for n̄RS was not yet tested for a chaotic system.
Fig. 13 we plotn̄RS as a function ofz51/h. The smooth line
is the analytical RS correction, the jagged line is the num
cal result forn̄RS computed for TSB0(6000). The agreemen
is very good. There is a small systematic deviation for la
z. Since largez corresponds to high energy, we attribute th
deviation to a loss of accuracy in the comput

FIG. 12. The wave function n561 ~unscaled! for
TSB0(3000). It scars the non-Newtonian orbitd1 of Fig. 6.

FIG. 13. Test of the RS correction. The smooth line is the a
lytical result computed in@2#. The jagged line is the numerica
result obtained for TSB0(6000) with Dirichlet boundary conditions
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2700 56A. KOHLER, G. H. M. KILLESREITER, AND R. BLÜMEL
tion of high lying energy eigenvalues. Thus, the analytica
derived RS correction passes a first test in the context
chaotic system.

D. Fourier transformation

The Gutzwiller trace formula@3# gives the fluctuating par
of the level density in terms of classical periodic orbits o
two-dimensional system. The Gutzwiller formula has be
extended to systems with ray splitting@1#:

r̃sc~E!5ImH 1

i\ (
j

Aj
1/2Tj

uL j u1/2u121/L j u

3exp$ i @~Sj /\!1d j #%J . ~25!

The summation is over all periodic orbits, Newtonian a
non-Newtonian,Sj is the action,Tj the period, andL j is
defined in Eq.~15!. Since TSBs do not have any caustics~see
Sec. II G!, Maslov phases are absent and only trivial pha
due to reflections contribute tod j . The quantityAj is given
by

Aj5F)
i 51

% j

ur i j u2GF )
k51

t j

~12ur k ju2!G , ~26!

where% j (t j ) are the number of reflections~transmissions!
encountered by the periodic orbitj and r i j is the reflection
coefficient at thei th reflection. In order to identify periodic
orbits in the level densityr̃(E) of TSBs we Fourier trans
form the quantum mechanicalr̃qm(h,E) in the following
way:

F~ l !5E r̃qm~E!exp~2 i l AE!dE. ~27!

Because of the semiclassical formula~25! we expect peaks a
the scaled actionl of classical orbits. We Fourier transform
the scaled density of states because for constanth the quan-
tities Aj are independent ofE. In Fig. 14 we showuF( l )u for
TSB0 in the range 1/2, l ,3/2 for h51/2. The resulting
peaks inF( l ) can be assigned to periodic orbits using Ta
II: The two small peaks are due to the NN orbitsa1 andb1
~see Fig. 6!. The two large peaks are due to the Newton
orbits A1 andB1 ~see Fig. 5!. It is interesting to note tha

FIG. 14. Fourier transform of the scaled energy spectrum
TSB0 with h51/2.
a

n

s

n

the orbitB1 produces a peak inF( l ) at all, since forh51/2
it does not correspond to a periodic orbit. However,
h51/2 it is very close to periodic, and leaves its mark a
distinct peak in Fig. 14. The action of the approximate
closed orbitB1 at h51/2 differs from the value listed in
Table II. For h51/2 it shifts to a value very close to th
position of the peak marked ‘‘B1’’ in Fig. 14.

IV. SUMMARY AND CONCLUSIONS

In this paper we presented a detailed classical and qu
tum mechanical analysis of a classT of triangular step bil-
liards. We showed analytically the absence of elliptic islan
in the TSB phase space; i.e., TSBs do not possess any s
orbits. There is at most a set of marginally stable orbits
measure zero in phase space. We also presented num
indications that TSBs are ergodic, sensitive, and mixi
Thus, within the limits of our numerical tests, TSBs are ch
otic. The KS entropy of TSBs was found to be zero. In t
quantum mechanical part of this paper we presented a sim
method for the solution of the TSB Schro¨dinger equation.
Using this method we computed quantum energy levels
quantum wave functions for the scaled and unscaled T
problems. The wave functions computed are distributed
mogeneously over the surface of the billiard. This is
marked contrast to the behavior of split circle wave functio
which show a fascinating variety of regular structures a
scars. Thus TSB wave functions are very close to ‘‘ergodi
a feature expected for a completely chaotic system. We
tested the RS correction to the Weyl formula in the cont
of a chaotic system. Within the numerical accuracy the co
puted RS correction is consistent with the analytical pred
tion. Isolated non-Newtonian TSB orbits were identified
the Fourier transform of the scaled density of states. As d
onstrated in Sec. II and in Appendix A, many features
TSBs can be computed analytically. Compared to the s
circle billiard defined in@4# the particular strength of TSB
rests in their much simpler phase-space structure and
access to its analytical properties. In analogy to the exp
ments of Ref.@6# TSB’s can be realized experimentally wit
the help of a triangularly shaped thin microwave cavity p
tially filled with teflon. We hope that such experiments w
soon be performed.
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APPENDIX A

Consider the periodic orbit shown in Fig. 15. The orbit
launched atj with momentumpj into Du . The task is to
computej andpj as well as the action of the orbit explicitl
as a function ofg andV0 . The momentumpj can be com-
puted immediately. Withw85p/22g, Snell’s law of refrac-
tion ~7! relatesw to g. We obtain

pj5sin~w!5k cos~g!. ~A1!

f
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Next we use the law of sines in the triangle spanned byw, g,
andb to obtain

w5cos~g!@sin2~g!A11V0 cot2~g!2k cos2~g!#21.
~A2!

FIG. 15. Sketch of the orbitC1.
. A

R

cs

E.
We apply the law of sines to the triangle spanned byw and
j̄. With j512 j̄ we obtain

j5122 cos2~g!F11
k

A11V0 cot2~g!
G . ~A3!

In order to compute the action of the periodic orbit shown
Fig. 15 we also needu andv. With w andj known explic-
itly, we apply the law of sines to the triangle spanned byj
andv and obtain

v5wj. ~A4!

The computation ofu is trivial:

u5j cos~g!. ~A5!

The action of the periodic orbit is now given explicitly by

S52~ku1v1w!. ~A6!
s
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